Safety Relay Unit

Compact safety relay units for E-Stop, door and safety monitoring applications.

- Simple front side wiring using screw-less terminals.
- 17.5 or 22.5 mm width to save mounting space
- 15 ms max. response time
- Safe OFF delay function up to PLe
- Easy maintenance with status indicators
- Approved standards:

EN ISO13849-1: 2008 PL e Safety Category 4,
IEC/EN 60947-5-1, IEC/EN 62061 SIL3, EN 81-1,
EN81-2, UL508, CAN/CSA C22.2 No. 14

Model Number Structure

Model Number Legend

G9SE

$\overline{(1)} \overline{(2)} \overline{(3)} \overline{(4)}$
(5)
(1) Function

None: Emergency stop
(2) Safety Output Configuration (Instantaneous Outputs)
2: DPST-NO
4: 4PST-NO
(3) Safety Output Configuration (OFF-delayed Output)
0: None
2: DPST-NO
(4) Auxiliary Output Configuration

1: PNP output
(5) Max. OFF-delay Time

None:
T05: 5 seconds
T30: 30 seconds

Ordering Information

Safety outputs		Auxiliary outputs* ${ }^{*}$	Max. OFF-delay time*2	Rated voltage	Model
Instantaneous	OFF-delayed ${ }^{3}$				
DPST-NO	-	1 (Solid-state)	-	24 VDC	G9SE-201
4PST-NO					G9SE-401
DPST-NO	DPST-NO		5 s		G9SE-221-T05
DPST-NO	DPST-NO		30 s		G9SE-221-T30

[^0]${ }^{*}$ 2 The OFF-delay time can be set in 16 steps as follows:
T05: 0/0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8/1/1.5/2/2.5/3/4/5 s
T30: 0/1/2/4/5/6/7/8/9/10/12/14/16/20/25/30 s
${ }^{* 3}$ The OFF-delayed output becomes an instantaneous output by setting the OFF-delay time to 0 s .

Specifications

Ratings

Power Input

Item	Model	G9SE-201	G9SE-401
Rated supply voltage		24 VDC	
Operating voltage range		-15% to 10\% of rated supply voltage	
Rated power consumption ${ }^{*} 1$	3 W max.	4 W max.	
${ }^{1}$ Power consumption of loads not included.			

Outputs

Item	Model	G9SE-201	G9SE-401
Safety output OFF-delayed Safety output	Contact output G9xiliary output	250 VAC 5 A 30 VDC 5 A (resistance load)	

Characteristics

Item			G9SE-201	G9SE-401	G9SE-221-T \square
Operating time (OFF to ON state)* ${ }^{* 1}$			$100 \mathrm{~ms} \mathrm{Max}.{ }^{*}$		
Response time (ON to OFF state) ${ }^{* 3}$			15 ms Max .		
Accuracy of OFF-delay time					Within plus or minus 10% of the set value
Inputs	Input current		5 mA Min.		
	ON voltage		11 VDC Min.		
	OFF voltage		5 VDC Max.		
	OFF current		1 mA Max .		
	Maximum cable length		100 m Max.		
	Reset input time		250 ms Min .		
Contact outputs	Contact resistance ${ }^{* 4}$		$100 \mathrm{~m} \Omega$		
	Mechanical durability		5,000,000 operations Min.		
	Electrical durability		50,000 operations Min.		
	Switching specification Inductive load (IEC/EN60947-5-1)		AC15: 240 VAC 2 A DC13: 24 VDC 1.5 A		
	Minimum applicable load		24 VDC 4 mA		
	Conditional short-circuit current (IEC/EN60947-5-1)		$100 \mathrm{~A}^{* 5}$		
Pollution degree			2		
Over voltage category (IEC/EN60664-1)			Safety output: Class III, the others: Class II		
Insulation specification	Impulse withstand voltage (IEC/EN60947-5-1)	Between input and output	6 kV		
		Between different poles of output	6 kV (between 13-14/23-24 and 33-34/43-44 (37-38/47-48)) 4 kV (between 13-14 and 23-24, between 33-34 (37-38) and 43-44 (47-48))		
	Dielectric strength	Between input and output	2,200 VDC		
		Between different poles of output	1,500 VAC		
	Insulation resistance		$100 \mathrm{M} \Omega$		
Vibration resistance* ${ }^{*}$			Frequency:10 to 55 to 10 Hz Amplitude: 0.35 mm half amplitude (0.7 mm double amplitude)		
Mechanical shock resistance ${ }^{*} 6$	Destruction		$300 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction		$100 \mathrm{~m} / \mathrm{s}^{2}$		
Surrounding air temperature			-10 to $55^{\circ} \mathrm{C}$ (No freezing or condensation)		
Ambient humidity			25\% to 85\%RH		
Degree of protection			IP20		
Weight			approx. 150 g	approx. 180 g	

[^1]
Connection

Internal connection

G9SE-201

G9SE-401

G9SE-221-T \square

Wiring of inputs and outputs

Signal Name	Terminal Name	Description of operation		Wiring
Power supply input	A1, A2	The input terminals for power supply. Connect the power source to the A1 and A2 terminals.	Connect the power supply plus to the A1 terminal. Connect the power supply minus to the A2 terminal.	
Safety input 1	T11, T12	To set Safety outputs in ON state, HIGH state signals must be input to both of Safety input 1 and Safety input 2. Otherwise Safety outputs cannot be in ON state.	1-channel Safety input	
			2-channel Safety input	
Safety input 2	T21, T22			
Reset/ Feedback input	$\begin{array}{\|l} \text { T31, } \\ \text { T32, } \\ \text { T33 } \end{array}$	To set Safety outputs in ON state, ON state signal must be input to T33. Otherwise Safety outputs cannot be in ON state.	Auto reset	
		To set Safety outputs in ON state, the signal input to T32 must change from OFF state to ON state, and then to OFF state. Otherwise Safety outputs cannot be in ON state.	Manual reset	
Safety output	$\begin{aligned} & 13-14,23-24, \\ & 33-34,43-44 \end{aligned}$	Turns ON/OFF according to the state of safety inputs, Feedback/Reset inputs. During off-delayed state, safety outputs are not able to turn ON.	Keep these outputs Open when NOT used.	
Off-delayed Safety output	$\begin{aligned} & 37-38, \\ & 47-48 \end{aligned}$	Off-delayed safety outputs. ${ }^{* 1}$ Off-delay time is set by off-delay preset switch. When the delay time is set to zero, these outputs can be used as non-delay outputs.		
Auxiliary output	X1	Outputs a signal of the same logic as Safety outputs		

Application Examples

Application Overview

- Immediately removes power to Motor M when Emergency Stop Switch S1 is pressed.
- The power to Motor M is kept removed until Emergency Stop Switch S1 is released and Reset Switch S2 is pressed.

Evaluation example

PL/safety category	Model	Stop category	Reset
PLe/4 equivalent	Emergency stop pushbutton: A22E-M-02 (2NC contact) Push Button Swith (from Annex C of ISO 13849-1) Safety Relay Unit: G9SE-201 Contactor of rated load (from Annex C of ISO 13849-1)	0	Manual

Note: The above PL is only the evaluation result of the example. The PL must be evaluated in an actual application by the customer after confirming the usage conditions.

Wiring Example

Application Overview

- The machine has the opening of the hazardous source which is small enough to prevent a person from entering.
- The Safety Light Curtain is installed at the safe distance from the hazardous source.
- Immediately removes power to Motor M when the Safety Light Curtain detects a finger entering the area.

Evaluation example

PL/safety category	Model	Stop category	Reset
PLe/4 equivalent	Safety Light Curtain: F3SJ-B Safety Relay Unit: G9SE-401 Contactor of rated load (from Annex C of ISO 13849-1)	0	Auto

Note: The above PL is only the evaluation result of the example. The PL must be evaluated in an actual application by the customer after confirming the usage conditions.

Wiring Example

Timing Chart

Device

Safety sensor
KM1 to KM4: Contactor M1, M2: 3-phase motor

Application Overview

- Immediately removes power to Motor M when Limit Switch S1 and Guard Lock Safety Door Switch S2 detect the opening of the Guard.
- The power to Motor M is kept removed until Reset Switch S3 is pressed.
- When the NC contacts on both KM1 and KM2 are closed and the lock release signal is input, the Guard can be opened while Lock Release Switch S4 is pressed.
- The power to Motor M is kept removed until the Guard is closed and locked and Reset Switch S3 is pressed.

Evaluation example

PL/safety category	Model	Stop category	Reset
PLe/4 equivalent	Safety Limit Switch :D4N- $\square 20$ Guard Lock Safety Door Switch:D4SL-N $\square \square \square A-\square$ (Mechanical lock) Push Button Switch(from Annex C of ISO 13849-1) Safety Relay Unit :G9SE-221-T05 Contactor of rated load (from Annex C of ISO 13849-1)	1	

Note: The above PL is only the evaluation result of the example. The PL must be evaluated in an actual application by the customer after confirming the usage conditions.

Wiring Example

Timing Chart

Device

S1: Safety limit switch
S2: Guard lock safety door switch (Mechanical Lock)
S3: Reset switch
KM1, KM2: Contactor
M: 3-phase motor

[^0]: ${ }^{4} 1$ PNP transistor output

[^1]: 1 The operating time is the time it takes for the safety contact to close after the safety inputs and feedback-reset input are turned ON. Not includes bounce time.
 2 This is in normal operation. When executing non-regular self-diagnosis for Safety output circuit, G9SE operating time become 500 ms max
 ${ }^{2}$ This is in normal operation. When executing non-regular self-diagnosis for Safety output circuit, G9SE operating time become 500 ms max.
 ${ }^{3}$ The response time is the time it takes for the safety main contact to open after the safety input is turned OFF. Includes bouncetime.
 ${ }^{-4}$ This is initial value using the voltage-drop method with 1 A at 5 VDC.
 ${ }^{5}$ Use an 8 A fuse that conforms to IEC 60127 as a short-circuit protection device. This fuse is not included with the G9SE.
 ${ }^{6}$ Condition: G9SE is mounted to mounting surface with screw and the screw mounting attachment. In the case of DIN rail mounting, mount DIN rail with G9SE to the place without big vibration. (Amplitude guideline: Less than 0.15 mm half amplitude (0.3 mm double amplitude))

